Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Allergy Asthma Clin Immunol ; 20(1): 28, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555427

RESUMO

Hereditary angioedema (HAE) poses diagnostic challenges due to its episodic, non-specific symptoms and overlapping conditions. This study focuses on the genetic basis of HAE, particularly focusing on unresolved cases and those with normal C1-inhibitor levels (nC1-INH HAE). This study reveals that conventional testing identified pathogenic variants in only 10 patients (n = 32), emphasizing the necessity for an integrative approach using genome, exome, and transcriptome sequencing. Despite extensive genetic analyses, the diagnostic yield for nC1-INH HAE remains low in our study, the pathogenic variant for nC1-INH HAE was identified in only 1 patient (n = 21). Investigation into candidate genes yielded no pathogenic variants, prompting a re-evaluation of patients' diagnoses. This study advocates for a nuanced approach to genetic testing, recognizing its limitations and emphasizing the need for continuous clinical assessment. The complex genetic landscape of nC1-INH HAE necessitates further research for a more comprehensive understanding. In conclusion, this study contributes valuable insights into the genetic intricacies of HAE, highlighting the challenges in diagnosis and the evolving nature of the disease. The findings underscore the importance of advanced sequencing techniques and an integrated diagnostic strategy in unravelling the complexities of HAE, particularly in nС1-INH HAE cases.

2.
Clin Genet ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38384171

RESUMO

Precise regulation of gene expression is important for correct neurodevelopment. 9q34.3 deletions affecting the EHMT1 gene result in a syndromic neurodevelopmental disorder named Kleefstra syndrome. In contrast, duplications of the 9q34.3 locus encompassing EHMT1 have been suggested to cause developmental disorders, but only limited information has been available. We have identified 15 individuals from 10 unrelated families, with 9q34.3 duplications <1.5 Mb in size, encompassing EHMT1 entirely. Clinical features included mild developmental delay, mild intellectual disability or learning problems, autism spectrum disorder, and behavior problems. The individuals did not consistently display dysmorphic features, congenital anomalies, or growth abnormalities. DNA methylation analysis revealed a weak DNAm profile for the cases with 9q34.3 duplication encompassing EHMT1, which could segregate the majority of the affected cases from controls. This study shows that individuals with 9q34.3 duplications including EHMT1 gene present with mild non-syndromic neurodevelopmental disorders and DNA methylation changes different from Kleefstra syndrome.

4.
J Med Genet ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38290825

RESUMO

OBJECTIVES: Speech and language impairments are core features of the neurodevelopmental genetic condition Kleefstra syndrome. Communication has not been systematically examined to guide intervention recommendations. We define the speech, language and cognitive phenotypic spectrum in a large cohort of individuals with Kleefstra syndrome. METHOD: 103 individuals with Kleefstra syndrome (40 males, median age 9.5 years, range 1-43 years) with pathogenic variants (52 9q34.3 deletions, 50 intragenic variants, 1 balanced translocation) were included. Speech, language and non-verbal communication were assessed. Cognitive, health and neurodevelopmental data were obtained. RESULTS: The cognitive spectrum ranged from average intelligence (12/79, 15%) to severe intellectual disability (12/79, 15%). Language ability also ranged from average intelligence (10/90, 11%) to severe intellectual disability (53/90, 59%). Speech disorders occurred in 48/49 (98%) verbal individuals and even occurred alongside average language and cognition. Developmental regression occurred in 11/80 (14%) individuals across motor, language and psychosocial domains. Communication aids, such as sign and speech-generating devices, were crucial for 61/103 (59%) individuals including those who were minimally verbal, had a speech disorder or following regression. CONCLUSIONS: The speech, language and cognitive profile of Kleefstra syndrome is broad, ranging from severe impairment to average ability. Genotype and age do not explain the phenotypic variability. Early access to communication aids may improve communication and quality of life.

5.
Eur J Hum Genet ; 32(3): 324-332, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38282074

RESUMO

Pathogenic variants in KANSL1 and 17q21.31 microdeletions are causative of Koolen-de Vries syndrome (KdVS), a neurodevelopmental syndrome with characteristic facial dysmorphia. Our previous work has shown that syndromic conditions caused by pathogenic variants in epigenetic regulatory genes have identifiable patterns of DNA methylation (DNAm) change: DNAm signatures or episignatures. Given the role of KANSL1 in histone acetylation, we tested whether variants underlying KdVS are associated with a DNAm signature. We profiled whole-blood DNAm for 13 individuals with KANSL1 variants, four individuals with 17q21.31 microdeletions, and 21 typically developing individuals, using Illumina's Infinium EPIC array. In this study, we identified a robust DNAm signature of 456 significant CpG sites in 8 individuals with KdVS, a pattern independently validated in an additional 7 individuals with KdVS. We also demonstrate the diagnostic utility of the signature and classify two KANSL1 VUS as well as four variants in individuals with atypical clinical presentation. Lastly, we investigated tissue-specific DNAm changes in fibroblast cells from individuals with KdVS. Collectively, our findings contribute to the understanding of the epigenetic landscape related to KdVS and aid in the diagnosis and classification of variants in this structurally complex genomic region.


Assuntos
Anormalidades Múltiplas , Deleção Cromossômica , Deficiência Intelectual , Humanos , Anormalidades Múltiplas/genética , Cromossomos Humanos Par 17 , Metilação de DNA , Genes Reguladores , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico
7.
Eur J Neurol ; 30(8): 2453-2460, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37165526

RESUMO

BACKGROUND AND PURPOSE: Charcot-Marie-Tooth disease (CMT) is a hereditary, slowly progressive neuropathy. Currently, there are no effective pharmacological treatments or sensitive disease activity biomarkers available. The aim of this study was to demonstrate the change in plasma neurofilament light chain (NfL) over time in a CMT cohort and analyse the association between CMT severity and NfL level. METHODS: Initially, 101 CMT patients and 64 controls were enrolled in the study. Repeated evaluation was performed in 73 patients and 28 controls at a 3-year interval. Disease severity assessment included clinical evaluation with CMT Neuropathy Score version 2 (CMTNSv2). Plasma NfL concentration was measured using the Simoa (single molecule array) NfL assay. RESULTS: Plasma NfL concentration was increased in the CMT group compared with controls (p < 0.001). Overall NfL level increased over the 3-year interval in both CMT (p = 0.012) and control (p = 0.001) groups. However, in 22 of 73 CMT patients and seven of 28 controls, the NfL level decreased from the baseline. Analysing the association between 3-year change in plasma NfL and disease severity (CMTNSv2), there was no correlation in the CMT group (r = 0.228, p = 0.052) or different CMT subgroups. CONCLUSIONS: Our study verifies increased plasma NfL concentrations in patients with CMT compared with controls. Longitudinal 3-year data showed a variable change in NfL levels between CMT subtypes. There was no association between change in NfL over time and disease severity. These findings suggests that NfL is not a biomarker for CMT progression.


Assuntos
Doença de Charcot-Marie-Tooth , Humanos , Doença de Charcot-Marie-Tooth/diagnóstico , Seguimentos , Filamentos Intermediários , Proteínas de Neurofilamentos , Biomarcadores , Progressão da Doença
8.
Am J Hum Genet ; 110(6): 963-978, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196654

RESUMO

De novo variants are a leading cause of neurodevelopmental disorders (NDDs), but because every monogenic NDD is different and usually extremely rare, it remains a major challenge to understand the complete phenotype and genotype spectrum of any morbid gene. According to OMIM, heterozygous variants in KDM6B cause "neurodevelopmental disorder with coarse facies and mild distal skeletal abnormalities." Here, by examining the molecular and clinical spectrum of 85 reported individuals with mostly de novo (likely) pathogenic KDM6B variants, we demonstrate that this description is inaccurate and potentially misleading. Cognitive deficits are seen consistently in all individuals, but the overall phenotype is highly variable. Notably, coarse facies and distal skeletal anomalies, as defined by OMIM, are rare in this expanded cohort while other features are unexpectedly common (e.g., hypotonia, psychosis, etc.). Using 3D protein structure analysis and an innovative dual Drosophila gain-of-function assay, we demonstrated a disruptive effect of 11 missense/in-frame indels located in or near the enzymatic JmJC or Zn-containing domain of KDM6B. Consistent with the role of KDM6B in human cognition, we demonstrated a role for the Drosophila KDM6B ortholog in memory and behavior. Taken together, we accurately define the broad clinical spectrum of the KDM6B-related NDD, introduce an innovative functional testing paradigm for the assessment of KDM6B variants, and demonstrate a conserved role for KDM6B in cognition and behavior. Our study demonstrates the critical importance of international collaboration, sharing of clinical data, and rigorous functional analysis of genetic variants to ensure correct disease diagnosis for rare disorders.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Animais , Facies , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Drosophila , Deficiência Intelectual/patologia , Histona Desmetilases com o Domínio Jumonji/genética
9.
Am J Case Rep ; 24: e939217, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37211757

RESUMO

BACKGROUND Ververi-Brady syndrome (VEBRAS) is an autosomal dominant condition associated with short stature, microcephaly, mild dysmorphic features, and learning disabilities. It was first described in 2018, and only 38 cases have been reported since then. All patients have mutation in the Glutamine-rich protein 1 (QRICH1) gene, yet clinical presentation has a broad spectrum and continues to expand. This report is of a mother and daughter pair with VEBRAS, associated with a new variant of the QRICH1 gene, NM_017730.3: c.337C>T; p.(Gln113*), and few previously undescribed phenotypic features. CASE REPORT We present 2 new cases, a mother and daughter, with novel heterozygous nonsense variant NM_017730.3: c.337C>T; p.(Gln113*). The daughter was referred to a geneticist at the age of 17 years because of seizures, dysmorphic features, and magnetic resonance imaging suggestive of leukodystrophy. In addition to already described clinical features, she had diffuse infantile hemangiomatosis and occipital balding. She was accompanied by her mother, who shared similar phenotypic features, raising suspicion for a similar genetic condition. Unlike the daughter, the mother never had any significant health problems or concerns and described herself as perfectly healthy. Genetic testing was performed in both individuals, and a novel pathogenic QRICH1 variant was discovered. CONCLUSIONS Considering the novelty of VEBRAS, every new clinical case contributes to the enlargement of the VEBRAS cohort, expanding the phenotypical and mutational spectrum, with potential improvement in the further care and observation of probands and their offspring. This report has highlighted the importance of clinical genetics in the identification of familial genetic disorders with complex phenotypes.


Assuntos
Nanismo , Deficiências da Aprendizagem , Microcefalia , Malformações do Sistema Nervoso , Feminino , Humanos , Microcefalia/genética , Mães , Malformações do Sistema Nervoso/genética , Testes Genéticos , Deficiências da Aprendizagem/genética
10.
Allergy Asthma Clin Immunol ; 19(1): 28, 2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031173

RESUMO

BACKGROUND: Hereditary angioedema (HAE) is a rare and life-threatening inborn error of immunity. HAE is mostly caused by pathogenic variations in the serine protease inhibitor gene 1 (SERPING1), leading to deficient or dysfunctional C1-inhibitor (C1-INH), overproduction of bradykinin, and development of recurrent subcutaneous and/or submucosal oedema. The prevalence of HAE is 1 in 50,000 - 100000 people worldwide. We aimed to describe the clinical features and genetic spectrum of hereditary angioedema with C1-INH deficiency (C1-INH-HAE) in Latvia. METHODS: All patients from Latvia diagnosed with HAE (types I/II) from 2006 to March 2022 were included in the study. Laboratory tests and clinical data were analysed, and genetic tests with Sanger sequencing and whole genome sequencing were performed. RESULTS: The study identified 10 C1-INH-HAE patients (nine females, one male) from eight families. The point prevalence of HAE in Latvia is 0.53 per 100 000 inhabitants. Of all patients, seven (70%) had HAE type I and three (30%) had HAE type II. The median age of patients was 54 years and the median age at onset of symptoms was 15 years. A significant delay (median 20.5 years) until diagnosis was observed, and 60% of patients had a positive family history of angioedema. All HAE patients have been hospitalised a median two times during their lifetime. Skin (100%), abdominal (80%), and airway (80%) oedema were the most frequent symptoms. Triggering factors (60%) and prodromal symptoms (90%) were referred. Attacks were severe in 50% of patients, moderate in 10%, and mild in 40%. Pathogenic variations of SERPING1 were identified in eight patients (six families), confirming the diagnosis molecularly. In two patients (two families), no pathogenic variations in the genes were found even after whole genome sequencing. CONCLUSIONS: Current data shows a significant delay and clear underdiagnosis of HAE in Latvia. Higher awareness and better information and communication between doctors would improve the diagnosis and management of HAE; as would screening of family members, patients with recurrent angioedema unresponsive to antihistamines and glucocorticoids, and patients with recurrent episodes of severe, unexplained abdominal pain.

11.
Pediatr Allergy Immunol ; 34(4): e13937, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37102386

RESUMO

OBJECTIVE: Netherton syndrome (NS) (OMIM:256500) is a very rare autosomal recessive multisystem disorder mostly affecting ectodermal derivatives (skin and hair) and immune system. It is caused by biallelic loss-of-function variants in the SPINK5 gene, encoding the protease inhibitor lymphoepithelial Kazal-type-related inhibitor (LEKTI). MATERIAL, METHODS AND RESULTS: Here, we describe NS clinical and genetic features of homogenous patient group: 9 individuals from 7 families with similar ethnic background and who have the same SPINK5 variant (NM_006846.4: c.1048C > T, p.(Arg350*)) in homozygous or compound heterozygous states, suggesting that it is a common founder variant in Latvian population. Indeed, we were able to show that the variant is common in general Latvian population, and it shares the same haplotype among the NS individual. It is estimated that the variant arose >1000 years ago. Clinically, all nine patients exhibited typical NS skin changes (scaly erythroderma, ichthyosis linearis circumflexa, itchy skin), except for one patient who has a different skin manifestation-epidermodysplasia. Additionally, we show that developmental delay, previously underrecognized in NS, is a common feature among these patients. CONCLUSIONS: This study shows that the phenotype of NS individuals with the same genotype is highly homogeneous.


Assuntos
Síndrome de Netherton , Humanos , Síndrome de Netherton/genética , Inibidor de Serinopeptidase do Tipo Kazal 5/genética , Letônia , Mutação , Pele
12.
Neurol Neurochir Pol ; 57(2): 206-211, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36916493

RESUMO

INTRODUCTION: Systemic sclerosis (SSc) is a chronic rheumatic disease that affects multiple organ systems, including the peripheral nervous system. However, studies into the involvement of polyneuropathies (PNP) have shown inconsistent results. The aim of this study was to determine the prevalence of small (SFN) and large (LFN) fibre neuropathy among SSc patients and the impact on health-related quality of life (HRQoL). MATERIAL AND METHODS: The study enrolled 67 patients with diagnosed SSc. The severity of neuropathic symptoms was evaluated using shortened and revised total neuropathy scoring criteria. Nerve conduction studies were used for LFN, and quantitative sensory testing was used to evaluate SFN. Neuropathic pain was evaluated using a Douleur Neuropathique en 4 questionnaire, and the severity of anxiety symptoms was assessed using a Generalised Anxiety Disorder-7 scale. The Health Assessment Questionnaire-Disability Index was used to assess HRQoL. Previous data on antinuclear autoantibodies (ANA) test results was obtained. Statistical analysis was performed using SPSS software. RESULTS: LFN was diagnosed in 47.8% (n = 32/67) and SFN in 40.3% (n = 27/67) of the subjects. ANA positivity was not associated with the presence of LFN/SFN. The severity of neuropathic pain had a significant correlation with anxiety symptoms (r = 0.61, p < 0.001), the severity of neuropathy symptoms (r = 0.51, p < 0.001) and HRQoL (r = 0.45, p < 0.001). The severity of neuropathy symptoms correlated with HRQoL (r = 0.39, p = 0.001). CONCLUSIONS: We demonstrated that PNP are found in almost all SSc patients. Also, SFN is as common as LFN. Additionally, we found that the severity of neuropathy symptoms and neuropathic pain are both associated with a worse HRQoL.


Assuntos
Neuralgia , Polineuropatias , Escleroderma Sistêmico , Humanos , Qualidade de Vida , Prevalência , Neuralgia/epidemiologia , Neuralgia/etiologia , Polineuropatias/epidemiologia , Polineuropatias/etiologia , Escleroderma Sistêmico/complicações , Escleroderma Sistêmico/epidemiologia
13.
J Cardiovasc Dev Dis ; 10(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36975868

RESUMO

BACKGROUND: Atrial fibrillation (AF) is the most common arrhythmia and typically occurs in elderly patients with other cardiovascular and extracardiac diseases. However, up to 15% of AF develops without any related risk factors. Recently, the role of genetic factors has been highlighted in this particular form of AF. AIMS: The aims of this study were to determine the prevalence of pathogenic variants in early-onset AF in patients without known disease-related risk factors and to identify any structural cardiac abnormalities in these patients. MATERIALS AND METHODS: We conducted exome sequencing and interpretation in 54 risk factor-free early-onset AF patients and further validated our findings in a similar AF patient cohort from the UK Biobank. RESULTS: Pathogenic/likely pathogenic variants were found in 13/54 (24%) patients. The variants were identified in cardiomyopathy-related and not arrhythmia-related genes. The majority of the identified variants were TTN gene truncating variants (TTNtvs) (9/13 (69%) patients). We also observed two TTNtvs founder variants in the analysed population-c.13696C>T p.(Gln4566Ter) and c.82240C>T p.(Arg27414Ter). Pathogenic/likely pathogenic variants were found in 9/107 (8%) individuals from an independent similar AF patient cohort from the UK Biobank. In correspondence with our Latvian patients, only variants in cardiomyopathy-associated genes were identified. In five (38%) of the thirteen Latvian patients with pathogenic/likely pathogenic variants, dilation of one or both ventricles was identified on a follow-up cardiac magnetic resonance scan. CONCLUSIONS: We observed a high prevalence of pathogenic/likely pathogenic variants in cardiomyopathy-associated genes in patients with risk factor-free early-onset AF. Moreover, our follow-up imaging data indicate that these types of patients are at risk of developing ventricular dilation. Furthermore, we identified two TTNtvs founder variants in our Latvian study population.

14.
Front Neurol ; 14: 1084335, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873433

RESUMO

HINT1 is an ubiquitous homodimeric purine phosphoramidase belonging to the histidine-triad superfamily. In neurons, HINT1 stabilizes the interaction of different receptors and regulates the effects of their signaling disturbances. Changes in HINT1 gene are associated with autosomal recessive axonal neuropathy with neuromyotonia. Aim of the study was detailed description of patients' phenotype with HINT1 homozygous NM_005340.7: c.110G>C (p.Arg37Pro) variant. Seven homozygous and three compound heterozygous patients were recruited and evaluated using standardized tests for CMT patients, in four patients' nerve ultrasonography was performed. The median age of symptom onset was 10 years (range 1-20), with initial complaints being distal lower limb weakness with gait impairment, combined with muscle stiffness, more pronounced in the hands than in the legs and worsened by cold. Arm muscles became involved later, presenting with distal weakness and hypotrophy. Neuromyotonia was present in all reported patients and is thus a diagnostic hallmark. Electrophysiological studies demonstrated axonal polyneuropathy. Impaired mental performance was observed in six out of ten cases. In all patients with HINT1 neuropathy, ultrasound examination showed significantly reduced muscle volume as well as spontaneous fasciculations and fibrillations. The nerve cross-sectional areas of the median and ulnar nerves were closer to the lower limits of the normal values. None of the investigated nerves had structural changes. Our findings broaden the phenotype of HINT1-neuropathy and have implications for diagnostics and ultrasonographic evaluation of HINT1-neuropathy patients.

15.
Vaccines (Basel) ; 11(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36851231

RESUMO

Some studies have found increased coronavirus disease-19 (COVID-19)-related morbidity and mortality in patients with primary antibody deficiencies. Immunization against COVID-19 may, therefore, be particularly important in these patients. However, the durability of the immune response remains unclear in such patients. In this study, we evaluated the cellular and humoral response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens in a cross-sectional study of 32 patients with primary antibody deficiency (n = 17 with common variable immunodeficiency (CVID) and n = 15 with selective IgA deficiency) and 15 healthy controls. Serological and cellular responses were determined using enzyme-linked immunosorbent assay and interferon-gamma release assays. The subsets of B and T lymphocytes were measured using flow cytometry. Of the 32 patients, 28 had completed the vaccination regimen with a median time after vaccination of 173 days (IQR = 142): 27 patients showed a positive spike-peptide-specific antibody response, and 26 patients showed a positive spike-peptide-specific T-cell response. The median level of antibody response in CVID patients (5.47 ratio (IQR = 4.08)) was lower compared to healthy controls (9.43 ratio (IQR = 2.13)). No difference in anti-spike T-cell response was found between the groups. The results of this study indicate that markers of the sustained SARS-CoV-2 spike-specific immune response are detectable several months after vaccination in patients with primary antibody deficiencies comparable to controls.

16.
HGG Adv ; 4(1): 100157, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36408368

RESUMO

WDR5 is a broadly studied, highly conserved key protein involved in a wide array of biological functions. Among these functions, WDR5 is a part of several protein complexes that affect gene regulation via post-translational modification of histones. We collected data from 11 unrelated individuals with six different rare de novo germline missense variants in WDR5; one identical variant was found in five individuals and another variant in two individuals. All individuals had neurodevelopmental disorders including speech/language delays (n = 11), intellectual disability (n = 9), epilepsy (n = 7), and autism spectrum disorder (n = 4). Additional phenotypic features included abnormal growth parameters (n = 7), heart anomalies (n = 2), and hearing loss (n = 2). Three-dimensional protein structures indicate that all the residues affected by these variants are located at the surface of one side of the WDR5 protein. It is predicted that five out of the six amino acid substitutions disrupt interactions of WDR5 with RbBP5 and/or KMT2A/C, as part of the COMPASS (complex proteins associated with Set1) family complexes. Our experimental approaches in Drosophila melanogaster and human cell lines show normal protein expression, localization, and protein-protein interactions for all tested variants. These results, together with the clustering of variants in a specific region of WDR5 and the absence of truncating variants so far, suggest that dominant-negative or gain-of-function mechanisms might be at play. All in all, we define a neurodevelopmental disorder associated with missense variants in WDR5 and a broad range of features. This finding highlights the important role of genes encoding COMPASS family proteins in neurodevelopmental disorders.


Assuntos
Transtorno do Espectro Autista , Proteínas de Drosophila , Transtornos do Desenvolvimento da Linguagem , Transtornos do Neurodesenvolvimento , Animais , Humanos , Transtorno do Espectro Autista/genética , Drosophila melanogaster/genética , Transtornos do Neurodesenvolvimento/genética , Análise por Conglomerados , Cromatina , Peptídeos e Proteínas de Sinalização Intracelular/genética , Histona-Lisina N-Metiltransferase/genética , Proteínas de Drosophila/genética
17.
Genet Med ; 25(1): 49-62, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36322151

RESUMO

PURPOSE: Pathogenic variants in genes involved in the epigenetic machinery are an emerging cause of neurodevelopment disorders (NDDs). Lysine-demethylase 2B (KDM2B) encodes an epigenetic regulator and mouse models suggest an important role during development. We set out to determine whether KDM2B variants are associated with NDD. METHODS: Through international collaborations, we collected data on individuals with heterozygous KDM2B variants. We applied methylation arrays on peripheral blood DNA samples to determine a KDM2B associated epigenetic signature. RESULTS: We recruited a total of 27 individuals with heterozygous variants in KDM2B. We present evidence, including a shared epigenetic signature, to support a pathogenic classification of 15 KDM2B variants and identify the CxxC domain as a mutational hotspot. Both loss-of-function and CxxC-domain missense variants present with a specific subepisignature. Moreover, the KDM2B episignature was identified in the context of a dual molecular diagnosis in multiple individuals. Our efforts resulted in a cohort of 21 individuals with heterozygous (likely) pathogenic variants. Individuals in this cohort present with developmental delay and/or intellectual disability; autism; attention deficit disorder/attention deficit hyperactivity disorder; congenital organ anomalies mainly of the heart, eyes, and urogenital system; and subtle facial dysmorphism. CONCLUSION: Pathogenic heterozygous variants in KDM2B are associated with NDD and a specific epigenetic signature detectable in peripheral blood.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Camundongos , Animais , Humanos , Metilação de DNA/genética , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , DNA , Mutação
18.
Neurol Genet ; 8(5): e200019, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36092982

RESUMO

Background and Objectives: Our objective was to report 2 novel variants and to reclassify previously reported alanyl-tRNA synthetase 1 (AARS1) variants associated with hereditary neuropathy and to summarize the clinical features of a previously published cohort of patients. Methods: We performed detailed neurologic and electrophysiologic assessments and segregation analysis of 2 unrelated families with Charcot-Marie-Tooth (CMT) disease with novel variants in the AARS1 gene. Via literature search, we found studies that included neuropathy cases with AARS1 variants; we then reviewed and reclassified these variants. Results: We identified 2 CMT families harboring previously unreported likely pathogenic AARS1 variants: c.1823C>A p.(Thr608Lys) and c.1815C>G p.(His605Gln). In addition, we reinterpreted a total of 35 different AARS1 variants reported in cases with neuropathy from the literature: 9 variants fulfilled the current criteria for being (likely) pathogenic. We compiled and summarized standardized clinical and genotypic information for 90 affected individuals from 32 families with (likely) pathogenic AARS1 variants. Most experienced motor weakness and sensory loss in the lower limbs. Discussion: In total, 11 AARS1 variants can currently be classified as pathogenic or likely pathogenic and are associated with sensorimotor axonal or intermediate, slowly progressive polyneuropathy with common asymmetry and variable age of symptom onset with no apparent involvement of other organ systems.

19.
Genet Med ; 24(10): 2051-2064, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35833929

RESUMO

PURPOSE: Although haploinsufficiency of ANKRD11 is among the most common genetic causes of neurodevelopmental disorders, the role of rare ANKRD11 missense variation remains unclear. We characterized clinical, molecular, and functional spectra of ANKRD11 missense variants. METHODS: We collected clinical information of individuals with ANKRD11 missense variants and evaluated phenotypic fit to KBG syndrome. We assessed pathogenicity of variants through in silico analyses and cell-based experiments. RESULTS: We identified 20 unique, mostly de novo, ANKRD11 missense variants in 29 individuals, presenting with syndromic neurodevelopmental disorders similar to KBG syndrome caused by ANKRD11 protein truncating variants or 16q24.3 microdeletions. Missense variants significantly clustered in repression domain 2 at the ANKRD11 C-terminus. Of the 10 functionally studied missense variants, 6 reduced ANKRD11 stability. One variant caused decreased proteasome degradation and loss of ANKRD11 transcriptional activity. CONCLUSION: Our study indicates that pathogenic heterozygous ANKRD11 missense variants cause the clinically recognizable KBG syndrome. Disrupted transrepression capacity and reduced protein stability each independently lead to ANKRD11 loss-of-function, consistent with haploinsufficiency. This highlights the diagnostic relevance of ANKRD11 missense variants, but also poses diagnostic challenges because the KBG-associated phenotype may be mild and inherited pathogenic ANKRD11 (missense) variants are increasingly observed, warranting stringent variant classification and careful phenotyping.


Assuntos
Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Deficiência Intelectual , Proteínas Repressoras , Anormalidades Dentárias , Anormalidades Múltiplas/genética , Doenças do Desenvolvimento Ósseo/etiologia , Doenças do Desenvolvimento Ósseo/genética , Deleção Cromossômica , Facies , Humanos , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , Fenótipo , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Repressoras/genética , Anormalidades Dentárias/diagnóstico , Fatores de Transcrição/genética
20.
Nucleic Acids Res ; 50(17): e97, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-35713566

RESUMO

De novo mutations (DNMs) are an important cause of genetic disorders. The accurate identification of DNMs from sequencing data is therefore fundamental to rare disease research and diagnostics. Unfortunately, identifying reliable DNMs remains a major challenge due to sequence errors, uneven coverage, and mapping artifacts. Here, we developed a deep convolutional neural network (CNN) DNM caller (DeNovoCNN), that encodes the alignment of sequence reads for a trio as 160$ \times$164 resolution images. DeNovoCNN was trained on DNMs of 5616 whole exome sequencing (WES) trios achieving total 96.74% recall and 96.55% precision on the test dataset. We find that DeNovoCNN has increased recall/sensitivity and precision compared to existing DNM calling approaches (GATK, DeNovoGear, DeepTrio, Samtools) based on the Genome in a Bottle reference dataset and independent WES and WGS trios. Validations of DNMs based on Sanger and PacBio HiFi sequencing confirm that DeNovoCNN outperforms existing methods. Most importantly, our results suggest that DeNovoCNN is likely robust against different exome sequencing and analyses approaches, thereby allowing the application on other datasets. DeNovoCNN is freely available as a Docker container and can be run on existing alignment (BAM/CRAM) and variant calling (VCF) files from WES and WGS without a need for variant recalling.


Assuntos
Aprendizado Profundo , Sequenciamento de Nucleotídeos em Larga Escala , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA , Sequenciamento do Exoma/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...